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Truthful Deep Mechanism Design for
Revenue-Maximization in Edge Computing
With Budget Constraints

Gang Li

Abstract—In this paper, collaborative task offloading in edge
computing is studied, where computation requesters can offload
tasks to not only the edge server, but also nearby smartphone
users. By considering the fact that smartphone users may not
always be willing to provide such computation service because
of the consumption of their own energy and resources, a truthful
mechanism is designed to provide incentive to smartphone users.
The design aims to maximize the net revenue of the service provider
and addresses more practical, but more complicated, scenarios of
unknown a prior distribution information on smartphone users’
private information. To tackle this high computational complexity,
which makes the traditional mechanism design methods infeasible,
a new approach, called truthful deep mechanism, is proposed by
leveraging a multi-task machine learning model, where inherently
inter-connected collaborator selection and pricing policy determi-
nation are decided by designing two deep neural networks. The
numerical results show that the proposed deep truthful mechanism
can ensure a convergence to a stable state and can satisfy all
required economical properties, including individual rationality,
incentive compatibility, and budget balance.

Index Terms—Edge computing, incentive

mechanism, revenue maximization.

deep learning,

I. INTRODUCTION

ECENTLY, in order to further improve smartphone users’
R Quality of Experience (QoE) and rationally utilize com-
putational resources in Edge Computing (EC), collaborative
offloading has been proposed [1], [2], in which smartphone users
are allowed to offload tasks to idle terminals in their neigh-
borhood for computation, called collaborators. However, these
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potential collaborators may not always be willing to provide
services without reimbursements since they need to consume
their own energy and computation resources. Moreover, in or-
der to better manage computational resources for smartphone
users, smartphone users’ private information is needed, which is
usually unknown to the central controller, e.g., the base station
(BS). Thus, incentive mechanisms should be designed to not
only incentivize collaborators for participation, but also force
smartphone users to truthfully report their private information.
Furthermore, in practice, the constraints of budget at smartphone
users have to be considered to prevent them from running out of
their pockets.

In the incentive mechanism design area, two different ob-
jectives [3] are commonly considered. One is social welfare
maximization, which maximizes the summation of all partic-
ipators’ utilities, and the other is to maximize the revenue of the
service provider. In the literature, compared to works [4]-[6],
which aimed to design incentive mechanisms by maximizing
the social welfare of the system, fewer studies considered the
revenue maximization due to its high complexity in solution [7].
Howeyver, the consideration of revenue maximization from the
service provider’s point of view is also important and meaningful
because this reflects the benefit or profit that the service provider
earns. Moreover, most existing works, such as [8]-[12], on rev-
enue maximization mechanism design were under the constraint
of Bayesian incentive compatibility (BIC), while we consider
a dominate-strategy incentive compatibility (DSIC) mechanism
design, which is a more stronger condition than BIC. In addition,
some work [13], [14] on revenue maximization mechanism
design in wireless networks assumed the availability of a priori
distributions of smartphone users’ private information. How-
ever, such an assumption may not always be true for practical
EC applications. Furthermore, even though work in [15], [16]
didn’tneed a priori distributions to design incentive mechanisms
with budget balance, their objectives were actually not to maxi-
mize the revenue. Therefore, it is necessary to redesign revenue
maximization incentive mechanisms by considering unknown
a priori distributions and at the same time satisfying some
economical properties, such as individual rationality, dominate-
strategy incentive compatibility, and budget balance. However,
such designis very challenging because of the following reasons.

® Traditionally, the designed mechanism should consist of an

allocation rule and a pricing policy, where the allocation
rule stipulates collaborator selection and the pricing policy
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determines how much smartphone users need to pay. In the
revenue maximization mechanism design problem, these
two aspects are tightly coupled. Existing work [8]-[12]
overcome this issue under the constraint of BIC. However,
even if the prior information is known, it is still unexplored
and extremely challenging to design an DSIC mechanism
under the constraint of budget balance for edge computing
systems;

e Withouta priori distributions of smartphone users’ private
information, the traditional solution methods for revenue
maximization in the literature become infeasible. Even if
there exist prior free mechanism design methods, such

s [17], [18], they designed the mechanisms under the
BIC condition and without considering budget balance
constraints. Therefore, a new approach has to be developed
to address such complicate mechanism designs;

e The net revenue of the service provider is defined as
the sum of all payments from smartphone users minus
its costs. Thus, the designed mechanism needs to collect
reimbursements as many as possible while still keeping
the constraint of budget balance at each smartphone user.
These two requirements are contradictory with each other
and further complex our problem;

e In order to better assign collaborators, the designed mech-
anism should force smartphone users to report their true
private information. Meanwhile, smartphone users who
have tasks to offload may confront more than one idle
collaborator available in their proximity, which results in
a multi-dimensional bidding setting. Since most existing
work on revenue maximization focused on just one- or two-
dimensional bidding, those solutions cannot be directly
applied to our case.

In light of the above challenges and difficulties, and motivated
by the recent advance in deep learning, in this paper, we aim
to design a new incentive mechanism integrating deep learning
approach, i.e., truthful deep mechanism design, for collaborative
task offloading in an EC system. Our objective is to maximize
the net revenue of the service provider while considering eco-
nomical properties in terms of individual rationality, incentive
compatibility, and budget balance. Because of the high com-
putational complexity involved, which prevents the application
of traditional mechanism design methods, new approach based
on a multi-task machine learning model is devised to generate
results for two inherently interconnected tasks, i.e., collabo-
rator selection and pricing rule, simultaneously. Specifically,
our proposed multi-task machine learning model consists of
two related well-designed deep neural networks for collaborator
selection and pricing rule, respectively. Then, the outcomes of
both deep neural networks jointly determine a loss function,
which is the optimization objective of our multi-task machine
learning model. Finally, this devised multi-task machine learn-
ing model is trained under this defined loss function. The main
contributions of this paper are summarized as follows:

¢ Different from the existing work which focused on social
welfare maximization, our work focuses on the more chal-
lenging revenue maximization problem with budget bal-
ance. What’s more, existing revenue maximization mech-
anisms can only be applied to a fixed bidding valuation

distribution, while our proposed mechanism can be suitable
for any distribution;

e Unlike [19], which considered one dimensional bidding
setting and chose only one winner for each running time, a
more general scenario where each smartphone user can
submit multiple biddings and multiple winners can be
selected in each round is considered to design a truthful
mechanism;

¢ Inspired by the multi-task machine learning model, a truth-
ful deep mechanism is devised to fit our specific problem,
and we further evaluate the performance of our proposed
incentive mechanism through comprehensive numerical
simulations.

The remainder of this paper is organized as follows. Section II
is the related works, while the system model is described in
Section III. In Section IV, the truthful mechanism framework
integrating deep learning is presented. Numerical results are
presented in Section V, followed by concluding remarks in Sec-
tion V1. In the sequel of this paper, E{x } denotes the expectation
of the random variable x, | X'| denotes the cardinality of set X',
and the superscript H denotes the transpose of a vector.

II. RELATED WORKS

The upsurge of studying task offloading in the future evolution
of wireless networks was spurring heated discussion on both
industrials and academia in past years. Previous efforts on task
offloading mainly focused on communication and computa-
tional resources allocation [20]-[22], while ignoring the issue
of incentivization to computational service providers. Recently,
more and more works such as [2], [4], [23]-[24] are shifting
their focuses to design incentive mechanisms in edge computing
systems. Specifically, with the consideration of network dynam-
ics in edge computing networks, such as different arriving time
of tasks, [2] proposed an online incentive mechanism for the
collaborative task offloading scenario where an optimization
problem was solved to maximize the total social welfare in an
online fashion. Furthermore, authors in [4] proposed a multi-
tiered edge computing architecture in which an optimization
problem was formulated to maximize the profit of the service
provider. Then, an incentive mechanism was designed to ad-
dress the optimization problem. Moreover, in order to ensure
the secure trading and resource allocation between smartphone
users and edge servers in edge computing, a blockchain-driven
resource allocation problem was modelled as a double truthful
mechanism to maximize the system efficiency in [23]. In IoT
applications [24], by joint consideration of Lyapunov method
and the framework of Vickrey-Clarke-Groves (VCG) mecha-
nism, an online truthful mechanism was designed to maximize
the long-term social welfare.

Artificial intelligence (Al) is envisioned as a promising tech-
nology to be employed in future wireless networks because of its
flexibility and ability for solving large-scale problems [25]. Al
is a broader concept of machine learning, which is probably the
most popular application of Al. Moreover, it has been shown by
many researches [26], [27] that compared to conventional meth-
ods, the utilization of machine learning can improve network
performance. As such, a bunch of works [28]-[34] are starting
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to design computation resource allocation algorithms in edge
computing networks based on machine learning techniques. For
instance, a multi-user multi-edge-server computation offloading
was formulated in [28] as a non-cooperative potential game
where each mobile user maximized its obtained computation
resource and reduced its energy consumption. This complex
problem was solved by a model-free reinforcement learning
technique [29]-[33]. Through applying deep learning for data
analysis in an edge computing system, paper in [30] designed a
convolutional neural network to collaboratively perform image
recognition between edge servers and the cloud in the proposed
system. Furthermore, by integrating deep learning and rein-
forcement learning techniques, [31]-[33] proposed deep rein-
forcement learning approaches in edge computing networks to
maximize the long-term benefits of the whole system. Moreover,
in [34], in order to obtain better offloading decisions, task execu-
tion time was firstly predicted by a low-rank learning model in
the edge computing system. Then, the task offloading problem
with predicted execution time was formulated to maximize the
number of offloaded tasks.

Notice that the above-mentioned works in edge computing
systems only considered either network economical aspects to
maximize total social welfare or computation resource allocation
by machine learning technology. Different from all of above
works, without knowing a prior distribution information on
smartphone users’ private information, we design a truthful deep
mechanism to maximize the total net revenue of the service
provider with the consideration of network economical proper-
ties in the collaborative edge computing system.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, the system model is first introduced. After that
we formulate the interactions between the BS and requesters, i.e.,
smartphone users, as an incentive (truthful) mechanism design
problem.

A. System Description

Similar to [1], [2], we consider an EC system, as shown in
Fig. 1.In the system, there is a base station (BS) equipped with an
EC server. Smartphone users are classified into two categories.
|N| = N users are called requesters, who would like to offload
computation tasks, while the rest of | M| = M smartphone users
are collaborators, who are recruited by the BS at the beginning
of offloading process and willing to provide computation service
if rewards are provided. The computation tasks can come from
the applications, such as data compression, face recognition, and
virus scan. Each collaborator can serve at most one task at any
time because of constraints on its computation capacity and the
resulted processing delay. In this paper, we use the term “task
executor’ to represent either the collaborator or the BS, and each
requester can only offload its task to at most one task executor.
In the considered system model, each requester first submits
its preference value, requested computation resource, available
budget, and available collaborators' to the BS, who then assigns

'Note that the available collaborators nearby requester i can be found by
applying the discovery approach [37].
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Fig. 1. Collaborative task offloading in edge computing.

task executors to complete all requested tasks. After completion,
the task executors send results to the corresponding requesters,
and the requesters should make compensation to the correspond-
ing task executors, both of which could be done through D2D
links [1] or cellular links. Note that if computational results
are not received successfully by the corresponding requester, no
reimbursement will be given to the task executor. Therefore, col-
laborators will try their best to complete the offloading process.?

Obviously, such interactions between the task executors
and the requesters can be modelled as a truthful mecha-
nism design problem, where the requesters are buyers and
the task executors are sellers. In this truthful mechanism de-
sign, for buyer i € A/, its submitted bid can be denoted as
b; = {bi,1>bi,27 <o bi7jyj+1, fi7 Bi}, where biJ‘ is the submitted
valuation of buyer 7 for task executor j, f; denotes the corre-
sponding requested computation frequency, and B; denotes the
budget of smartphone user 7. Note that in practice, smartphone
users cannot run out of their pockets to reimburse selected task
executors. Thus, the budget balance means the payment made
by any smartphone user cannot be more than a fixed upper
limit, i.e., B;. We further define a matrix b = {by;b2;- -+ ;bn 1,
which is composed of all requesters’ bids, and denote v as the
truthful bids of b. As previously stated, it is practical that b are
private known information to requesters themselves and may
vary with the time. Therefore, similar to works in [14], [35],
[36], the bid of smartphone user ¢ follows a distribution F;. But,
unlike those work, which always assumed the availability of this
a prior distribution, we consider a more general case where this
distribution may be unavailable. Moreover, let [; be the task size
in bit unit of requester ¢, and the index M + 1 represents the
BS and M; = {M + 1 UM}. Note that requesters can have
different values of b; ; to different task executors. For example,

2If the collaborator moves out of the communication coverage of requesters
just after the start of offloading process, the task will probably not be completed
because of transmission interruption, which incurs no rewards to collaborators.
Therefore, there are no incentives for collaborators to move out. For the move-
ment of requester, the computation result and the reimbursements can also be
received and transmitted through the cellular link even if requesters move out
of the cell.
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a requester with a latency-intensive task may value more to
collaborators who have better channel conditions, while the
requester with a computation-intensive task may value more to
the BS.

Our designed truthful mechanism consists of an allocation
rule (i.e., collaborator selection) g(b) = {g; ;(b) }icnr, jer, and
a pricing or reward policy p(b) = {p;(b) }icn, where the func-
tion g; ;(b) specifies winners that can offload tasks, while the
function p;(b) stipulates the amount of rewards or reimburse-
ments to task executors. Therefore, the utility of any requester 7
can be calculated as

Us(b) = Y 91,5 (B)bi; — pi(b). ()

JEM,

Note that in the bidding process, each requester may strategically
misreport its bid in order to maximize its utility. As such, in
the proposed truthful mechanism design, the following three
properties have to be met to prevent misreport and incentivize
participation.

Definition 1 (Individual Rationality (IR)): A truthful mech-
anism M% = (g(b), p(b)) is individually rational for all re-
questers, if their utilities are no less than 0, i.e.,

U;(b) >0, VieN. )

The property of individual rationality guarantees that each par-
ticipator can obtain non-negative benefit which provides them
incentives to participate.

Definition 2 (Incentive Compatibility (IC)): A truthful mech-
anism M = (g(b),p(b)) is incentively compatible if no re-
quester can improve its utility by misreporting its bid, i.e.,

Ui(bi,b,i) > Ui(?)i,b,i), I;l S n(i), Vie N, (3)

where b_; € bis defined as the set of bids from other requesters
except i, and 7)(4) as the set of potential misreport of requester i.
In the real-world scenario, this property is of great importance
as it can force all bidders to bid their real bids. It resists market
manipulation and ensures auction efficiency and fairness.

Definition 3 (Budget Balance (BB)): A truthful mechanism
M*% = (g(b),p(b)) is budget balanced if no requesters’ pay-
ments exceed their budgets, i.e.,

Besides, since each task executor has limited computation
resource capacity, we impose the following constraint on each
task executor as

Zfigi,j(b) < Fj,Vje My, %)
ieN
where I is the maximal computation resource at executor j.
Furthermore, by considering the fact that each mobile user can be
offloaded to at most one task executor, and each collaborator can
only execute at most one offloaded task, we have the following
constraints:

D giib) <1, VjeM, 6)
ieN

> 9ib) S LVieN. ™
JeM,
Note that constraints (6) and (7) exclude the BS since the
BS can accept more than one task resulting from its ample
computational capacity.

B. Problem Formulation

Similar to [35], [39], in this paper, we aim to derive functions
g(b) and p;(b) that maximize the expected net revenue, which
can be expressed as

L(g(b),p(b)) = ]Eb~]F{Z Z (pi(b) —ci;)gi;(b)}, (8)

ieN jEM,

where F = F} x F, x --- X Fiy is the joint distribution of all
requesters’ biding b, ¢; ; = B; x &;l; f? is the processing cost of
executor j for requester 7, 3;, j € M is the cost for unit energy
consumption at task executor 7, and §; is the energy consumption
coefficient [38]. In the following discussions, we omit the vector
b in both g(b) and p;(b) for notational simplification. Then, our
revenue maximization mechanism design can be formulated as
the following optimization problem:

max L(g,
(. (9:p)

s (2),(3), (4), (5), (6),and (7),

where C denotes a class of mechanisms. However, solving such
optimization problem (P1) is extremely difficult because 1)
even if constraints (4)—(7) are removed from the problem (P1),
distributions on requesters’ valuations have to be known to solve
this problem [39]. However, such distributions are not always
available in practice; 2) even though such a prior distributions
are known in advance, according to [7], existing approaches
can only deal with the problem (P1) without considering the
constraint (4) and in a small scale case;’ 3) (g, p) in (P1) are not
simple variables, but functions, which make (P1) fall in the scope
of functional analysis. To address all aforementioned challenges,
in the following section, we will propose a new mechanism
design method to solve this complex problem.

(P1)

IV. TRUTHFUL DEEP MECHANISM DESIGN

In this section, we first reformulate (P1), and then develop a
framework to design a truthful deep mechanism to maximize the
net revenue with the consideration of all constraints on IR, IC,
BB, and computation capacity.

A. Problem Reformulation

We first introduce the following metrics to measure the devi-
ation degree from IR, IC, BB, and the constraint (5). For these
reasons, we

¢ define expected ex-post regret for any requester ¢ as

p(g.pi) = Epop{ max U;(bi,b_;) — Ui(b;, b_;)}, (9)

1€n(i)

3Small scale means the number of participants in the bidding campaign is
small, such as two or three.
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If p(g,pi) = 0, requester ¢ cannot gain its utility by mis-
reporting its information, which means the constraint (3)
holds.

e define the expected ex-post IR penalty to requester ¢ as

6(9,pi) = Epr{max{0, -U;(b)}}.

If §(g, p;) = 0, the utility of requester 4 is no less than zero,
which means the constraint (2) satisfies.
e define the expected BB penalty to requester ¢ as

#(9,pi) = Epr{max{0,p;(b) — B;}}.  (11)

If ¢(g,p;) = 0, no requesters can have an overpayment,
which means the constraint (4) satisfies.
® define the expected computation resource (CR) penalty of

task executor j as follows
0;(9) = EpF {max {07 Z figij(b) — F; }} . (12)
ieN
If0;(g) = 0, no executor exceeds its computation capacity,
which means the constraint (5) satisfies.

Furthermore, since the joint distribution, i.e., I, of all re-
questers’ biding is unknown to the BS, in order to further
simplify the mechanism problem (P1), we use the geometric
average to represent (9)—(12) and the objective. To this end, we
apply a Q-length sample set 7.5 = {b(1) ... b(@ . . b@)1
from the historical data and estimate (8)—(12) based on this set
as

(10)

Q

5gp) = = 3 mas{0, ~Us (b))}, (13)
Q5

&g, pi) = Zmax{o pi(b'?) - Bi}, (14)

j Q Zmax{o Zfzg” b))

ieN

} NG

Moreover, in order to estimate the constraint (9), another
sample set 7'S(9) independently drawn from the historical data
is leveraged as misreport bids for each b(?), and we calculate the
maximum utility gain over this sample set 7’5(?) as

Q

popi) = 5 Zbg;asﬁ)U(bzab(”) U (b@),

(16)

where b‘}} represents the qth element in the sample set 7S (‘I),
but not including the bids of requester 7. Note that in order to
keep in line with the traditional usage in machine learning, we
intend to minimize the negative expected net revenue so that the
estimation of (8) can be expressed as

X/'\ ZZ Z i b(Q) _Ctj)gtj(b(q))

q 1ieN jeM,
(17)

Given these estimates, we can reformulate the original prob-
lem (P1) as

(gny)ré CN L(g,p)
st. Cy: (6), (7),

Gy Bi(g) =0VYje M,
Cs: 0(g,pi) =0, VieN,
Cy: plg,ps) =0, VieN,

Cs: d(g,pi) =0, Vie N. (P2)
It is worth noting that g and p in the problem (P2) are optimizing
functions. To this end, inspired by the framework of multi-task
machine learning, we design a truthful deep mechanism in
follows where g and p are both modelled by our designed
inter-related neural networks, and are further trained together
as a whole neural network. Furthermore, the designed truthful
deep mechanism is actually a randomized mechanism, where the
allocation scheme g represents the probability that a requester
can be allocated to a given task executor.

B. Design of Allocation Rule and Pricing Policy

Note that in the reformulated problem (P2), our aim is to find
suitable allocation rule and pricing policy, i.e., g and p, to mini-
mize the objective while satisfying constraints Cy — Cs. For this
purpose, we model the allocation rule, i.e., g, as a feed-forward
neural network which contains L fully-connected hidden layers
with sigmoidal activations for each node, as shown in Fig. 2. We
use the softmax activation function to output a interim vector as
ap, A(N4+1)1 211, 2N (M +2)» and determine the final allocation
results by comparing values of those elements in the interim
vector. Specifically, in this network, we denote y,(f) as the output
of sigmoidal activation function  at the £*" hidden layer, where
telL={1,2--- L} and k € Ky ={1,2,...,J¢}. Jp is the
total number of sigmoidal activation functions at the hidden
layer ¢, and we index each hidden layer’s sigmoid functions

from top to bottom as 1,2---.J,. Let w,(c) be the row weight
vector belonging to the k*" sigmoid function at hidden layer .

We further use the row vectors wE ]J{ ) and wgﬁg ) to represent

the weights for output layer a; ; and z; ;, respectively, and use

¢ L41 L41
w = {w;),w( ) E,j,2 )

i } to denote all vector parameters
which are arranged in a row vector. Thus, the outputs of the
kth sigmoid function at the first and any hidden layer £ can be
expressed as

B =T ) = o)), Ve K,

|

(18)

d =wy d9), VeerL; keky, (19)
where the column vector I = {I}, I, ..., Inry3)} is the
input of allocation rule architecture, and the sigmoid function
iso(x) = 1+ —,and y¥) = {y(/), yy), - 7y(f)}T which is a
column vector. The outputs of the last layer in thls neural network
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4y 1 ,
dan 1 i
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Fig. 2. Allocation rule architecture g.

are

A = w Ty vi=1,2- N+ 1 VjeM,

(20)

sit) = wi Wy D vie Ny V=12 M +2,

0] 1,5,2

ai; = softmax(dy™V,. AT, Vie NV e My,

L L . )

ziyj:softmax(sz(-’ﬁl),. . .,sg,(ﬂllz)),Vz eN;Vje My,

(21)

where the softmax function is defined as

softmax(xy,...,x,) = % Note that in order to
=1

indicate the cases where no requester chooses collaborator j or

the BS, so that requester ¢ fails to offload its task, d(L+1)

N+1,j
sgﬁ\}ri)z are used as the reductant inputs, respectively. Let .4 and

Z be matrixes of all a;; and z; ;, respectively. Furthermore,
by considering the fact that the BS can accept more than one
task, we add one identity column vector in the last column of
matrix A. Finally, the allocation result g (b) can be obtained
by element-wise minimization of matrix A and matrix Z, i.e.,
g7 (b) = min{a; ;, 2 ; }.

Similarly, the pricing policy is also modeled by using a feed-
forward neural network with 7' = | 7| fully-connected hidden
layers and a fully-connected output layer, as shown in Fig. 3.
We use wlk(t) to denote the weight vector of node % at layer ¢ in

the price architecture and the output of node k at the hidden layer
tis c,(:). Let all outputs at the hidden layer ¢ be a column vector,
denoted as c(*) = {cgt), cgt), cee cf,t,)}H, where J] is the total
number of sigmoidal activation functions at the hidden layer ¢.
Also, let K; = {1,2,..., J/}. Likewise, the outputs of the k*"
sigmoid function at the first layer and any hidden layer ¢ can be
respectively written as

and

WD =wMg oV =e), VE=1,2,....0, (2

Fig. 3.

Pricing policy architecture p.

WD =Pt o) — (D) Vie T, VEk ek, (23)

where the column vector J = {.Jy, .J5,..., JN(M+3)}H is the
input of pricing policy architecture. The outputs of the last layer
in this neural network are

PTHD = 4 T o' () = pelu(h{T), Vi e N,
(24)

where relu(z) = max{x,0} ensures that payments are non-
negative. We use w’ = {'w,k(t),t eTU(T+1);k € Ki}tode-
note all vector parameters which are also arranged in a row
vector, and let p}”/ (b) represent the payment made by requester
1 given the pricing policy architecture parameters w’ and the
biding b.

Lemma 1: According to the designed allocation rule, the
allocation result, i.e., gm-(b), satisfies both constraints (6) and
().

Proof: Since the allocation rule outputs a;; and z;; by
softmax function, as in Fig. 2, a; ; and z; ; take values between
zero and one. For any collaborator j, the softmax function is
calculated based on all requesters, which is the column of matrix
A. For any requester 4, the softmax function is implemented
based on each row of matrix Z. Suppose that requester ¢ has the
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highest probability to offload its task to collaborator j, which
means a; ; is the largest value in the jth column in the matrix
A. Moreover, collaborator j also coincidentally has the highest
chance to accept and execute task from requester ¢. This means
2z; j 1s the largest value in the ith row in the matrix Z. Therefore,
for the other collaborator j', it is impossible to accept the task
from requester as z; ; > z; jy. Even though a; ; is still a largest
one in the j’ column, requester i cannot offload task to ;' because
of g; y = min{a; j,z; y}. The same reasons can be applied
to another requester ', which cannot offload its task to the
same collaborator j. Thus, the final allocation result meets both
constraints (6) and (7). This completes the proof. [ |

Following the similar procedures as in [40], we can easily
prove the following Lemma.

Lemma2: Letr = {ry,r,...,rq} be asample drawn inde-
pendently from distribution D. Then the following inequation
holds with probability of at least 1 — «.

log é
Q )

where Rq(F) = GE{supymer 2opcr Tif (i)}, 7 s a
random variable, which is drawn from a uniform distribution
on {—1, 1}, and set F is a class of functions f(r).

Theorem 1: The maximal expected revenue achieved by
the proposed machine learning technique is bounded by

Q Zq 1 Zze/\/’pl( ) + 2bmazN\/2]og [P) + \/ > with
probability of at least 1 — a, where P is the set of all reward
functions.

Proof: Based onLemma 2, we only need to calculate R ¢ (F).
Let f(b) = 3, pi(b), and pj(b) is another payment method

Q
Erep{f(r)} < 5 3 £() + 2Ro(F) + 25)
i=1

from the set 7’, such that maxy Y, [pi(b) — pi(b)| < €. We
have
1 Q
RQ(”P):— - supZTqsz b(Q) _QET supZTq
q 1 ieN p(b) q=1
> pib?) } =E, bupZTqZIPL (6\?) — ()|
ieN q 1 ieN
¢ Q
S Er SUPZTq sz + @ET{Z Tq}
q 1 ieN q=1
< S (Z /(b(q)))z 2log(|P'))
= b; - A
q=1 \ieN Q
/
< Nby ) 2208UPD)
Q

where b,,,, 1S the maximum submitted valuation from the
distribution I, and the last inequation holds because

Q
> @)y

q=1 ieN

\/>meax

mam

This completes the proof. |
Theorem 2: The expected average ex-post regret, i.e.,
p* = % Y icn p(g,pi) achieved by the proposed machine

learning technique is bounded by & Y, A(g,pi) +
log

D TBECD 1 [T
least 1 — o, where K(C, 5)) is the minimum covering number
for the truthful mechanism set C by a ball with radius 5.

Proof: At beginning, we give some definitions as follows.
Let U; be the set of all possible utility functions for smartphone
user ¢, i.e., U;(b), and U is defined as a set of all utility functions,
i.e., {U;(b), i € N'}. Furthermore, Define a new function ¢;(b)
as

with probability of at

tl(b) = Inax Ui(éi, b,i) —
bien(i)

Ui(bi, b_;).

Let 7; be the set of the function ¢;(b) with different
Ui(b) eU;, and T ={T;, i € N}. Moreover, we define
a spatial distance between two different utility function
Ui(b) and U/(b) as maxp p |U;(b) — U/(b)|, and a distance
between U and U’ as maxpp )\ |Ui(b) — Uj(b)]. We
then define K (U;(b),¢€), K(U,¢€), K(T;(b),€), and K(T ,¢)
be the minimum number of balls with radius e to cover
the set U;(b), U, T;(b), and T under the correspondingly
defined distances, respectively. In addition, the spatial distance
between two mechanisms (g; ;(b), p:(b)), (g; ;(b), p;(b)) € C
is defined as  maxp ) cn e, 196,5(0) — i (D) +
> ien [pi(b) = pi(b)], and K(C,€) is the minimum number
of balls with radius € to cover the mechanism set C
under this distance. Let t(b) =, \ ti(b), and the set
T = {t(b), V(tl(b),tz(b),...,t]v(b)) S T} Similar to
Theorem 1, we assume that there is another ¢ (b) € T where
IT'| < K(T,¢), which means maxy |£(b) — '(b)| < € holds.
Then, we have

Rg (7’) = %E,— sup ZTq Zt b(q

q 1 ieEN

1
:éET Supz Zt b(q

ti (b ieN

—E,<sup y T |t: (b)) — ¢ (b(D)]
Q t(b) ; ! lEZN
2log(K(T
S Nb'maa; Og(c;w (26)

From (26), we only need to prove K(7,¢) < K(C,5). In
order to prove this inequation, we carry out the following three
steps.

® We suppose that there exists an utility function set

U; with covering number at most K (If;, 5), such that
maxy |U;(b) — Uj(b)| < 5. Then, for any b, we have

| max(U; (bs, b_;) —

K

Ui(biyb—i))—
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I%%X(U{(béa b_i) — Uj(bi,by))|

i

< [max(Us(bi, b-i) — max(Uj (0, b-s)+
Ui (bis b)) — Ui(bi, b-y))|

< | max(U;(b;, b_;) — %@X(Ué(béa b

i i

|U; (b, b_;)) —

i)+

Ui(bi, b_;

~—

)l
< | max(U;(b;, b-;)

0

— max(U; (b}, b-i)| +

N

Furthermore, let b; = arg max; U;(b;,b_;) and b =

arg maxy U, (b}, b_;). Then, we have
max Ui(gi; bfl) = Ul(gj, b,i) < UZ,(B:, bfl) + % <
by
110 % € ’ €
Uz(bz 7b—i) + E = H})E;%X Ui(biv b—z) + 5,
max U/(b], b-) = Uj(b;',b3) < U(b; b-i) + 5 <

Ui(bi,b_;) + <

€

>
Therefore, for any U;(b), there always exists U/(b),
which  satisfies | maxg (Us(bi,b;) — Us(bi, b)) —
maxy (U (b}, b-;) — Ul(b;,b_;))| <e. This means
K(Ti,e) < K(Us, 5) holds.

e Assume that there exists another mechanism set C, satisfy-
ing |C| < K (C, €). Therefore, for any (g; ;(b), pi(b)) € C,

we have
)+ Z pi(b

max Z 19:,5(b)
2,

Remind that v; ; is the truthful valuation to smartphone
user i, and for the utility functions U;(b) and U;(b), we

_gm b)| <e.

have
|Us(b) = Us(b)| <
|Zvi7j9w vagm )|+ [pi(b) — pi(b)| <
) = 9i,; (D) + [pi(b) — pi(b)| <

llilloe > 19i,3(b
i

> 19.(b)
i

where v; = {’Um s Vi e ey Ui,]\/j_;,_]}, and ||UL||oc is the in-
finite norm of v;. For all smartphone users, we have

ZIU (b)| <
> l9i5(0) b+ > Ipi(b) = pi(b)

This means we have K (U, ¢) < K(C,¢).

— §i,;(b)] + [pi(b) — pis(b)],

— i | <e.

Loss

Fig.4. The whole multi-task machine learning model of our proposed method.

e Based on the definition of K (U, €), there exists U whose
covering number is at most K (U, €). Therefore, for any
U;(b) €U, we have Y, |U;(b) — U;(b)| < e. Further-
more, we have | 32, U;(b) — 3, U;(b)| < €, which means
that K(T,¢) < K(T,¢). Moreover, following previous
two steps, we have K (T,¢) < K(U,5) < K(C, %).

By applying Lemma 2, and taking into consideration of ¢(b),

we have

2log(K(C, %)) 1\/log1
<7 z+2bmam 2 +—= &
S Sl ) 2B L g

7,6/\/

This completes the proof. |

Note that from Theorems 1 and 2, when the number of
samples, i.e., @, is large enough, the expected revenue and the
expected average ex-post regret equal the empirical revenue and
the empirical average regret.

C. The Design of Training Method

After we have designed the architectures for both the alloca-
tion rule and pricing policy, we can integrate them into a single
one, as shown in Fig. 4. Since the allocation rule and pricing pol-
icy architectures respectively output allocation rule, i.e., g(b),
and pricing policy, i.e., p(b), the utility of each requester can be
obtained based on (1). Then, IR, IC, BB, and the constraint (5)
can be formulated as constraints in the problem (P1). Note that
Fig. 4 specifies a multi-task machine learning model resulting
from the facts that 1) the determinations of the allocation and
pricing rules are two related tasks; 2) the first few layers are
shared by two architectures, and these two architectures should
be trained simultaneously to maximize the net revenue under our
defined loss function below. According to Fig. 4 and the problem
(P2), we can formulate a new optimization problem (P3) in
which the optimization variables are the parameters involved
in both allocation rule and pricing policy architectures, i.e., w
and w’, as follows:

min K/f( qv, p“’,) (P3)
st. plg@,p)=0,YieN, (27)
5(g¥,p¥) =0, Vie N, (28)
B(g¥,p¥) =0, Vie N, (29)
0;(g%) =0, Vje M,. (30)
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We solve this training problem (P3) by using the augmented
Lagrangian method [41]. Specifically, we first construct a La-
grangian function, i.e., loss function, and then add four quadratic
penalty terms in order not to violate constraints (27), (28), (29),
and (30). Thus, we have

Lag(w,w', A, k) = ./\/L )+ Z rid(g*, pt)
ieN
+ 209", ) + Aaap(g® o) + > 09+
JeEM,

z (Z@(gw,p;”’)z + (g%, 1) + (g™, )

where A= {)»]71, ‘e ,)\],N,)\L],. . ,)\.271\/’,)\.3717. .. ,)\.3’1\/,
Aly ... An41) are the Lagrange multipliers associated with
constraints (27), (28), (29), and (30), and x > 0 is the penalty
parameter that controls the weight for violating constraints (27),
(28), (29), and (30). We then perform the following updates in
each iteration s:

(w1, wl(sﬂ)) = arg min,, ,,, Lag(w,w’, A, k) (31)
M = A+ b ),
)“(S'H) = )‘2; + k(g™ ),
M =28+ milg® o),
W =08 1 kb (), (32)

where the mini-batch stochastic subgradient descent is applied
to solve the problem (31). For clarity, the training algorithm for
allocation and pricing architectures is listed in Algorithm 1.

Next, we evaluate the computational complexity of the train-
ing method by using the same metric as in [42], [43]. We use one
of neural networks as an example, which has Ny and N, numbers
of input and output nodes, respectively, and D number of hidden
layers with N, nodes for each layer. Then, the computation cost
for mini-batch gradient descent algorithmis O(N; N, + N7 D +
N¢N,).Inour case, the total computation costis O (3N M N, +
3NNy + NeM + N7 (L +T))Np x Ny x | §2]), where the
symbol |z] denotes the flooring of real number z, N, is the
maximum iteration number of A, and Np and Np are the
total training data and min-batch sizes, respectively. As the
algorithm needs the memory space to store the gradients of the
weights in the back propagation process [44], the total memory
cost is O((L + T') x Ng). Moreover, since the BS has strong
computation capacity in the mobile edge computing system, the
training algorithm can be done at the BS [45].

Algorithm 1: Training Algorithm.

1 Initialization;

2 w® = wp,w ©) = wy;

3 =AY =02 = 0, Yie N, A =
M, Ve My

4 k= kg, n=0;

5 while n < N,. do

6 5 =0;

7 while s < N, do

8 k=1;

9 while k£ < N; do

10 Obtain w*+Y) and w'(*1) by optimizing

(31) with N numbers of mini-batch;

1 Caleulate §(g, p ). d(g™. 01 ). H(g™, P ).
and 0; i(g™) by using all test data, and update
AL A AT A by (32)

12 | Update x with N,; numbers totally by k = x + 075

13 Output;
14w, w,and NL ;

V. NUMERICAL RESULTS

In this section, we present simulation results* to demonstrate
the effectiveness of our proposed mechanism in EC collaborative
offloading. We use Tensorflow for implementing the deep learn-
ing algorithm and assume that the number of requesters N =5
and the number of collaborators M = 4. In our simulation,
two architectures share one common layer, and both allocation
rule and pricing policy architectures include 2 hidden layers
with 8 nodes each. The batch size in the mini-batch stochastic
gradient algorithm is set to 32 for training the allocation rule
and pricing policy architectures. In each epoch, we first train
the proposed mechanism on the training set and evaluate the
revenue on the test set, both of which contain 64000 training
samples. In addition, the architectures will keep training with
the training data for ten epochs until it converges. The processes
of updating A; ;, A24, A3, and A; run every 50 iterations With
the update of the architectures.  is updated as x = & + 22 ol
where n represents the number of times for updating «, and « is
updated every 1000 iterations of updating networks. The initial
value of x is 0.5 for both DU I and CU distributions, which
will be introduced later, while for DU II distribution, the initial
value of & is set to 1.0 for the purpose of fast convergence. The
energy consumption coefficient, i.e., {;, at task executor j is set
to 10720 [2], the size of offloading tasks, i.e., [;, are randomly
generated between 10 to 30 MB, and the unit energy cost, i.e.,
Bj = 0.1 [2]. Besides, the maximal computation capacities at
collaborators and the BS are 2 GHz and 10 GHz, respectively,
and the requested computation frequency is randomly produced
between [0.4 GHz, 1.44 GHz] [24]. Moreover, define p, 9, and
¢ as the average values of p;, 6;, and ngSZ across all requesters on

4Since no practical data are available, similar to [5], [6], we generate the
training and test data from the three uniform distributions (i.e., two discrete
uniform distributions and one continuous distribution).
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the test set. Note that , ¢, 6 and 6 represent the indicators of
IC, IR, BB, and the constraint (5), respectively, which can be
mathematically expressed as.
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The values of Lagrangian function, revenue, p, 5 0§ and @ are
recorded every batch in the mini-batch stochastic gradient during
the training processes. In order to avoid the issue of overfitting
in the training process, all results in the following figures are
output on the test set after each training epoch. In addition, to
study the effect of requesters’ different budgets on the revenue,
we generate budgets based on two different forms where the
first form is a uniform distribution that contains the maximal
valuation of each requester, while the other one is also a uniform
distribution that any values from this distribution is higher than
the maximal valuation of each requester. Furthermore, for better
illustrating the generalization of our designed mechanism, we
generate requesters’ valuations from the following distributions.
Note that our proposed mechanism has no limitation on certain
distributions.

e Discrete Uniform I (DU I): valuations of each requester
are drawn from the identical uniform distribution over two
values (0.5, 1.0).

e Budget I (B I): the budgets of each requester are drawn
from an identical uniform distribution over [0.5, 3];

e Budget I (B II): the budgets of each requester are drawn
from an identical uniform distribution over [1, 3];

Discrete Uniform II (DU II): valuations are drawn

from the identical uniform distribution over three values

(0.5,1.0,1.5).

e Budget I (B I): the budgets of each requester are drawn
from the identical uniform distribution over [0.5, 5];

e Budget II (B II): the budgets of each requester are drawn
from the identical uniform distribution over [1.5, 3];
Continuous Uniform (CU): valuations of each requester are

drawn from the identical uniform distribution over [0, 1].

e Budget I (B I): the budgets of each requester are drawn
from the identical uniform distribution over [0, 3];

e Budget II (B II): the budgets of each requester are drawn
from the identical uniform distribution over [1, 3];

Fig. Sillustrates the trend of Lagrangian functions through the
training processes for different distributions with two budget
cases. We can see that the curves of these three distributions
decrease, and then gradually stay unchanged after one thousand
iterations, which indicates that the networks have been trained
to convergence.

Fig. 6 evaluates the revenues along the training process. As
shown in this figure, all curves reach saturation after a short
period of time. Moreover, among a certain budget distribution,
DU II achieves the largest revenue. It is because the bidding
valuations and the budgets for DU II are larger than other
scenarios so that the winning probability of requesters with high
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Fig. 6. The value of Revenue of 3 valuation distributions with two different
budgets during network updating.

valuations increases. Similarly, the revenue of CU with B I is
the smallest because both bidding valuations and budgets are the
smallest in average so that the reimbursements to collaborators
or the BS are relatively low. Interestingly, even if the lower bound
of budget distribution is higher than the upper bound of valuation
distributions, i.e., using B II, the revenue of DU I is smaller than
that of its counterpart using in B I. It is because by using B II,
only two requesters can win and offload their tasks to nearby
collaborators, as shown in Table II, so that the total revenue
of DU I becomes lowest. Furthermore, for both DU II and CU,
when adopting budget distribution B II, the revenue values will
be higher than that of its counterpart using B I. This is because
requesters with larger budgets are more easier to win and make
higher payments in this case.

Fig. 7 depicts the trend of average Regret, i.e., p, for the three
valuation distributions with different budgets. In this picture,

p are initially large for all cases. This may because requesters

would like to get more utilities by misreporting their bidding
information. However, for all three valuation distributions, the
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TABLE I
THE VALUES OF WELL-TRAINED AVERAGE REGRET AND IR PENALTY

DU I DU II CU
Regret (p) | IR penalty (6) | Regret (p) | IR penalty (6) | Regret (p) | IR penalty (0)
B I 0.0047 0.0045 0.0041 0.0035 0.0038 0.0025
B II 0.0042 0.0044 0.0039 0.0038 0.0040 0.0030
TABLE II

OFFLOADING ALLOCATION RESULTS BY PROPOSED INCENTIVE MECHANISM FOR THREE VALUATION DISTRIBUTIONS WITH TWO DIFFERENT BUDGETS

DU I DU II CU
Collaborator BS Collaborator BS Collaborator BS
1 2 3 4 1 2 3 4 1 2 3 4
i v v
2 v v
B 1 | Requester | 3 v/ v/ v/
41V
5 v
1 v v
2 v
B II | Requester | 3 V4
4 v v v
5 v v
4/ indicates that the requester will offload its task to the corresponding BS or collaborator.
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Fig. 7. The value of p of 3 valuation distributions with two different budgets  Fjg 8. The value of ¢ of 3 valuation distributions with two different budgets

during network updatings.

value of p decreases rapidly and then converges to almost zero,
which means the IC condition is satisfied.

Fig. 8 shows the value of BB penalty, i.e., 5, with the in-
crease of training process for three valuation distributions with
different budgets. It can be shown that initiatively, when the
budget distributions which contain the valuation distributions
are considered, i.e., using B I, 5 are small enough for both
DU I and DU II, while the value of 5 for CU is a bit higher
than others. This is because, at the very beginning, p*’ in the
pricing policy architecture for both DU I and DU IT is very small,
but is relatively larger for CU, which can be verified by initial
revenues in Fig. 6. Afterwards, 5 for those three distributions
will eventually reach a plateau before a peak appears at about
one thousand iterations. These can be explained as follows. As

during network updatings.

the ongoing of the training process, all revenues firstly increase
so that payments from requesters may violate their budgets.
Furthermore, although revenues become stable after about 1000
iterations, the training algorithm is still running to satisfy the BB
constraint. As a consequence, a peak of ¢ will appear shortly for
all distributions, and then the values go down and stabilize below
0.01 afterwards, which means the BB condition is satisfied.
Note that quite different from the trends by using B I for three
valuation distributions, values of ¢ are all around zero in B II
case. This is because the lowest value from budget B 11 is higher
than that of the upper bound of those valuation distributions so
that the BB condition is naturally demanded in this case.
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Fig. 9 demonstrates the change of IR penalty, i.e., §, for three
valuation distributions with different budgets. From this figure,
we can see that with the increase of iterations, the values of &
for all cases gradually decline, and then tend to almost zero,
which means the IR condition is satisfied after training. Note
that for all valuation distributions, different budget distributions
have no influences on satisfying IR condition. Furthermore,
Fig. 10 shows the changing trend of CR penalty, i.e., §, for three
valuation distributions. It can be seen that allocated computation
resources incurs a very small violations on 6;, which means the
constraint (5) holds.

For more intuitive understanding the convergence of our
trained networks, we tabulate the well-trained values of IC and
IR,i.e.,regretand IR penalty, in Table I. As we can see, the values
of both the regret and IR penalty are small enough regardless of
the selected distributions of budget balance. Moreover, Table II
lists one of the potential allocation results for three valuation dis-
tributions with two budget distributions by using the well trained
allocation rule and pricing policy architectures. It is worth noting
that in order to get the maximum revenue, requesters may prefer

more to offload their tasks to nearby collaborators rather than
offload to the BS. This means offloading all tasks to the BS is
not always the best choice for requesters, which further shows
potential applications of the collaborative offloading architec-
ture.

VI. CONCLUSION

In this paper, we design a truthful deep mechanism for co-
operative task offloading in the edge computing system. Our
objective is to maximize the net revenue of the service provider
while satisfying IR, IC, BB, and computation resource capacity
conditions. The designed mechanism is extremely difficult and
no existed methods can be applied to address it effectively.
To this end, inspired by multi-task machine learning model,
we apply the deep learning technology to achieve our design.
Specifically, two specified neural networks architectures are
designed to figure out the functions of allocation rule and pricing
policy, respectively, and then these neural networks are trained
together by the augmented Lagrangian method. Numerical re-
sults demonstrate the effectiveness of our designed truthful deep
mechanism while only incurring small IR penalty, Regret, BB
penalty, and CR penalty.
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